
ANALYSIS OF MESSAGE PASSING IN FOS:
An Operating System for Clouds and Multicores

Akansha Gautam , Soma Sircar , Pankaj Gupta

School of Computer and Engineering,
Birla Institute of technology,Mesra

Abstract- Factored Operating System basically focuses on
advancements in the operating system for clouds and cores
with number of other cores. It is a microkernel based design
that helps in making efficient use of all the available
architectural resources and also keen to make the
performance better. The main job of factored operating
system is to divide the operating system services in group of
distributed system processes that is used for passing the
message instead of sharing memory. There are number of
cores and each and every address space is particularly
attached to them individually. This assignment of cores to
entire system increases the abundance of cores at the data
centre. Hence no application will rest on hold competing for
the on-core cache resources. But for using these resources the
message passing system be wasted in transfers of requests
between cores.

INTRODUCTION
The two main reasons behind the development of factored
operating system are-
1. difficulty in maintaining the scalability of an operating
system.
2. each cloud fragment processing their isolated interfaces
To overcome these problems fos was created and it
communicates through message passing. In message
passing an uniform interface is provided making an
efficient usage of available architectural resources.
Messages are passed through a mailbox which can even act
as an endpoint for one way channel for communicating
with other process. In this process the mailbox is build on a
different machine then the one sending the message and the
message is directed by a proxy server. Hence, we can
conclude that a single message processing machine can act
as a multiple machine in a cloud data centre.
There are basically two ways of message transportation in
cache coherent multiprocessors:

1. Kernel messaging: kernels are used to transfers
message to data structures by receiving process’s
address space

2. User messaging: works on the basis shared
memory channel processing, hence takes more
time as it proceses more number of cycles but
provides better throughput and lower latency.

Main Contributions:
 Cache performance is properly studied
 Fast messaging is done
 Transportation of messages is done dynamically
 Messaging through multiple machines
 Analysis of message performance

DESIGN AND IMPLEMENTATION
There are few basic aims:

1. The number of cores per die has been steadily
increasing to unprecedented levels

2. System as a service cloud providers use
virtualization to multiple access to physical
machine

Figure 1: A view of fos running on three separate
physical machines in a cloud data centre. In this, the
application requires more cores than a single machine
can provide. As a result, a single image, powered by
libfos, maintains the illusion that the application is
running on one large machine. The application relies
on a file system service that is provided by the fos OS.
Communication with the file system is seemless and
uniform, regardless of the physical machine that
initiated the request

The most importation issue with this single system message
processing was memory cache coherence was not
supported.

System Architecture

Figure 2. Each core runs a microkernel in privileged mode
and libfos in unprivileged mode. Higher-level OS services

Akansha Gautam et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (2) , 2016, 951-953

www.ijcsit.com 951

run in separate processes and are accessed through message
passing, there are a network stack and a memory manager
too

 Fleet Services
Designed for:
1. maximizing scalability
2. maintaining elasticity

Service:

 Naming: provides connections between the file
names and their addresses

 File system: provides external support
 Networking: provides support in transportation.
 manages access to physical memory
 servicing page faults

MESSAGEPASSING OPTIMIZATIONS

Basically there were performance issues in case of micro
kernels because they make context switching costs
whenever an OS runs in a separate domain[1].Hence here
we discuss few techniques for efficient message sharing

1. Kernel message passing optimization: L4 was one
of the first operating systems that offered fast
message passing performance through the
kernel[7].This was accomplished through a variety
of optimization techniques. First, L4 stores small
messages directly in processor registers, avoiding
the need to read such messages from memory.
This optimization is not possible when messaging
between different cores, because registers cannot
be shared between cores directly. Second, the L4
microkernel sets up temporary virtual memory
mappings (exposed only to the kernel) that allow it
to copy the message payload directly into the
receiver's address space.

2. User-level message passing is an alternate
approach where the kernel only performs context
switching (for cases that require multiplexing a
single core) and memory setup. All other aspects
of message passing are performed at user-level.
This notion was pioneered in URPC [8]. URPC
combines an efficient user-level message passing
scheme with user-level thread scheduling.
Messages are sent and received by the application
directly over a shared memory mapping
established before the first message is sent.

CACHE PERFORMANCE STUDY

A new open source memory trace generator and cache
simulator called CachEMU was created to evaluate the
inherent advantages and disadvantages of each design in
terms of memory access costs. It is crucial for future
operating systems to use memory resources efficiently in
order to avoid higher latencies and to conserve off-chip
bandwidth [6]. Otherwise, poor cache hit rates could cause
cores to loose excessive cycles waiting for memory
references. The results in this study indicate that a fos-style
OS accesses memory more efficiently through improved

cache locality. Thus, it has the potential to be a superior
design for future multicores.

PROPERTIES OF A MESSAGING SYSTEM
A variety of decisions and tradeoffs can be made in a
message passing system. fos's
message passing system adheres to the following
properties:
" All communication is connectionless. When stateful
connections are required, they can be implemented at the
application level.
* Several processes can enqueue messages to a single
mailbox, but messages can only be dequeued by the
specific process that registered the mailbox. This allows for
both one-to-one and many-to-one communication patterns.
" Each mailbox has a fixed size buffer allocated to it. If the
buffer is full, new messages are rejected until enough space
becomes available.
* The receiver is guaranteed to receive messages in the
same order that the sender enqueues them. However, the
order of messages across multiple senders is unspecified.
" All messaging communication is asynchronous. In other
words, a process can enqueue a new message before a
previous message is dequeued.
A connectionless, many-to-one design was chosen over
traditional channel based messaging (e.g. TCP/IP) for two
reasons. First, it is expected to map more closely to
hardware interfaces that support direct access to on-chip-
network resources, resulting in a more raw and high-
performance interface. Second, the reduction in messaging
state could make it easier to support live process migration
features in the future.

CONCLUSION
Hence, we conclude that there are two ways for passing
message in factored operating system...In kernel based
message passing the message possess high latency but low
cost of setup infact it is completely opposite in User based
message passing. The other point of discussion was the
analysis of performance of operating system on single core
and multiple cores. It also focuses on proper usage of cache
and make it available.

BIBLIOGRAPHY
[1] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim

Harris, Rebecca Isaacs, Simon Peter, Timothy Roscoe, Adrian
Schupbach, and Akhilesh Singhania.The inultikernel: a new OS
architecture for scalable inulticore systems.In SOSP '09: Proceedings
of the ACM SIGOPS 22nd symposium on Operating systems
principles, pages 29-44, 2009.

[2] Nathan (Nathan Zachary) Beckmann. Distributed naming in a
factored operating system. Master's thesis, Massachusetts Institute of
Technology. Dept. Of Electrical Engineering and Computer
Science., 2010.

[3] Silas Boyd-Wickizer, Austin T. Clements, Yandong Mao, Aleksey
Pesterev, M. Frans Kaashoek, Robert Morris, and Nickolai
Zeldovich. An Analysis of Linux Scalability to Many Cores. In
OSDI 2012: Proceedings of the 9th USENIX conference on
Operating Systems Design and Implementation.

[4] David Wentzlaff, III Gruenwald, Charles, Nathan Beckmann, Adam
Belay, Harshad IKasture, Kevin Modzelewski, Lamia Youseff, Jason
E. Miller, and Anant Agarwal. Fleets: Scalable services in a factored
operating system. Technical Report MIT-CSAIL-TR-2011-012, MIT
CSAIL, March 2011.

Akansha Gautam et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (2) , 2016, 951-953

www.ijcsit.com 952

[5] Donald Yeung, John Kubiatowicz, and Anant Agarwal. Multigrain
shared memory.ACM Trans. Comput. Syst., 18:154-196, May 2000.

[6] Doug Burger, James R. Goodman, and Alain Kigi. Memory
bandwidth limitations of future microprocessors. In Proceedings of
the 23rd annual international symposium on Computer architecture,
ISCA '96, pages 78-89, New York, NY, USA, 1996. ACM.

[7] Brian N. Bershad, Thomas E. Anderson, Edward D. Lazowska, and
Henry M. Levy. User-level interprocess communication for shared
memory multiprocessors. ACM Trans. Comput. Syst., 9:175-198,
May 1991.

[8] Jochen Liedtke. Improving ipc by kernel design. In Proceedings of
the fourteenth ACM symposium on Operating systems principles,

SOSP '93, pages 175-188, New York, NY, USA, 1993. ACM.

Akansha Gautam et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (2) , 2016, 951-953

www.ijcsit.com 953

